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CURRENT AND MAGNETIC FIELD DISTRIBUTION

FOR AN INFINJTELY LONG SOPERCONDUCTOR

OF RECTANGULAR CROSS-SECTION

G. i-ller

!.

- I. INTRODUCTION

The numerical results contained in this report give an essentially

complete picture of the quantitative manner in which current piles up

along the corners of a superconductor. We have chosen various cross-

.. sections varying down to dimensions comparable to the skin depth as we

will later wish to compare the results obtained here (using the local

London equation) with those to be obtained from the non-local Pippard

equation.

1
1
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i
II. TWO REGION PROBLEM

We assume that inside the superconductor current density and mag-

*- netic field are related by the equations

Vx(x':i) ~H (London)

V xH I (Maxwell)

It is convenient to choose a rectangular coordinate system with the Z -axis

coinciding with the longitudinal axis of the superconductor. Let A be a

vector potential such that H =V x A with the gauge V * A = 0, then the

only non-vanishing component of A is A which we will write as the

scalar function (x, y). The current density and the magnetic field are

given in terms of 1

, (

Using the' Maxwell equation outside the superconductor and combining

Eq.. (11. 1) we. have

5 0 out side
"" = (TT. 3),

1inside,

where the field outside is still given by (H. 2). At the superc nductor

boundary Hx and Hy must be continuous; -this condition is fulfilled with no

I
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loss of generality if and its normal derivative are required to be con-

tinuous across the boundary.

Since (II. 3) is homogeneous, the normalization of may be chosen

at will. Now far away from the conductor, I Hi - so from (11. 2)

the total current is

a = a rI (11.4)

Our mathematical and computational problem is then to solve the two-

regional problem (11. 3) by a function which is continuous and has continu-

ous first derivatives everywhere and which is asymptotically logarithmic.

'V

'V

I

I

T
4t
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II. REGIONAL ITERATION

The iterative method selected for solving (I. 3) consists of alter-

nately solving an exterior and interior problem. Let C denote the boUn-

dary of the rectangle and suppose (c) is an initial guess for the boundary

values of f).Let and ye denote solutions of the interior and ex -

teror problems respectively.

i* The iteration is started by solving

I" and continued by solving

]~~~ e -(.z

Since we must ultimately match both the values of the functions and their

-- normal derivatives , there are many ways to choose the boundary condi-

" tions other than those selected above. To see, that this choice in. not

arbitrary, consider a one-dimensional analogue of (jI. 3)#

-; (11.1

CL 0 .A>,% f
T-

t>

4J(I .W L
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To effect a normalization of set f(KL) 1, K> 1, then

$Ox)ACO~~ K (-i (III. 4)

According to our proposed iterative method, we compute

1+ B,.,0 1-5K))L = Ah C

7 that is,,-

L OC- L (111.6)

and the condition for convergence is

Ici &_L__ k__ < 1 ,(.,,

-- L K-I

In our problem, we are principally interested in large K so this is the

appropriate order of the iteration. Reversing the above procedure leads

to the reciprocal of the above condition; this would be the right choice

V for Knear •

I.
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IV. EXTERIOR PROBLEM

Since is known to be constant on sufficiently large circles, one

could conceivably specify ? on such a circle and attempt to solve the

exterior problem by a relaxation method for some difference approxima-

tion of Laplaces equation. There are two substantial drawbacks to this

approach; a) because of the accuracy required near the rectangular

- boundary an enormous number of grid points would be needed, b) there

is no satisfactory way to determine how large the bounding circle should

be (it turns out that it would have to be exceedingly large for long, thin

rectangles). With the help of the conformal mapping developed below, we

are able to reduce the problem to series form and thereby treat the whole

infinite region.

Consider a quadrant of the exterior as shown below.

IY

Lii

yX
lAl

I

-PLANE

Figure IV. I Quadrant of the Region Exterior to the Rectangle
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The region A is the conformal image of a half-strip in the w-plane

under the mapping (c.f. Appendix A):

Z~w N N(iS&B- +~ cc~~v1

I Where W =NB(o), L = NA(e) and

ir

On this half-strip, the solution of Laplaces equation is given by the series

J..

and hence ( (xly) = (u (x, y), v (x, y) is obtained by inverting (IV. 2).

The coeffieient of v in (IV.4) determines the normalization of the asymptotic

form of r . x o, we have

(IV.5')

Iand hence I = 4w is the total current for aU cases computed.

I

'F
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V. INTERIOR PROBLEM

The solution for the interior problem was approximated by solving

I a a difference equation using a relaxative method. A rectangular grid was

selected with a fine subdivision near the material boundary and with a

comparatively coarse subdivision near the middle of the superconductor.

Error estimate's were obtained for this interior problem both from known

local formulas and by computing a test problem of known solution.

I,

~1

V
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VI. COMPUTATION

* These computations were performed on the Space Technology

Laboratories' I. B. M. 7090 and required some five to ten minute computa-

tion time per case. In practice, it was found that only a few regional

iterations were needed and that convergence was hastened by averaging

the coefficients in successive exterior series (IV. 4). For a typical case,

several thousand grid points were used in the interior region and several

j hundred terms were used in the exterior series. At this time it appears

to the author that a series approach to the interior problem would have

] significant advantage over the relaxation method used.

1 Results of the computation are exhibited in the graphs of Appendix B.

For large regions, the graphs only show the character of near a corner.

j The labeling fc' n' erefer to the values f(L+iW), f(iW),

(L) as shown in Figure (IV. 1).I
I
I
I
I

I
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" APPENDIX A

The mapping used in the exterior problem.

Let Z(W) be the mapping function for the regions shown below.

W IIu + W u iv

I Iz(w) / .' t -

()'
0 a r U IX

W - PLANE Z - PLANE

Figure A. 1 Regions Defining Z (W)

We will show that

E(w) + rG-5 C"-O

V A (A.Z2)
lr

The fundamental net for the. region exterior to a rectangle consists of curves

U (x, y) = costantv (x, y) = comstant, where u and v are conjugate

I"
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harmonic functions on this region. Cutting this region along the lines of

symmetry results in the region ..O. whose boundary i entirely made up

by lines of the fundamental net, thus the mapping W (Z) = u(x, y) + iv (x, y)

will map I.V on to a region t with a rectangular fundamental net and we

can determine the image 1 of i t1 under W (Z) as well as 11" under
dW = u, + = vy - iuy. MI we can then map .2 onto -fl by a mapping

F(W). we will obtain a differential equation

& Fw F(w) (A. 3)
cL7

which can be integrated for the desired mapping Z (W).

The region A' is constructed by considering the values, of u, v,

Uy vy on the various pieces of the boundary of ft

(AtIB)' dw L",v-C 2  di

i(A)'

uC L - PLANE

(s)' umC3 V =C2

(iB) (A + iB)'

Figure A. 4 The Image of 41' under dw
!.z
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The image, of fl under the mapping I/L 2 is.:

(O)(A)" (A +iB)" (iB)" (0o)"

2 /- I1  v =C2  v =C

Figure A. 5 An Intermediate Image

0
Now choose C. = W, C2 = 09 C3 = 0, and mapS by cos(W) onto

thir given

7// // /

Figure A. 6 An Intermediate Image

which except for translation and normalization agrees with .fl-1• The

I normalization is fixed by (iB) I I - (A)" = 2 and since (A + iB)" lies between

(A)'" and (iB)" we can choose the translation to be cos 0( for 0 < o( C ii,

then

1 L. C4W-C04,0(A

I
I
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But I/L : - so Z(w) is determined by

d (A. 8)

This can be developed in an exponential series by using the generating func-

tion for Legendre polynomials

-.2 0 (A. 9)

V
To do this, write

iW

dw ;" C < (A.l 0)

then

.!. " 2L//:- d I.()

Ii-II - S (-(.~. -I

This gives
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-w

but for aiw. n ~ zero, f* ve soC = .

AMw - iW-

Aw V
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APPENDIX B

The following graphs exhibit the lines of constant current density

in the superconductor and. lines of constant magnetic field outside the

superconductor.

,i

V

i

1
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Figure B. 3I Contour Map of Relative Current Density
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Figure B. 9% Contour Map of Relative Current Density
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